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Abstract. A radio bimodality is observed in galaxy clusters: a fraction of clusters host giant
radio halos while the majority of clusters do not show evidence of diffuse cluster-scale radio
emission. Present data clearly suggest that the radio bimodality has a correspondence in
terms of dynamical state of the hosting clusters. I will report on these evidences in some
details and discuss the role of cluster mergers in the generation of giant radio halos and their
evolution. Finally I will report on expectations on the statistical properties of radio halos
assuming that the emitting electrons are re-accelerated by merger-turbulence, and discuss
the role of incoming LOFAR surveys.

1. Introduction

Radio and X-ray observations of galaxy clus-
ters prove that thermal and non-thermal com-
ponents coexist in the intra-cluster medium
(ICM). While X-ray observations reveal ther-
mal emission from diffuse hot gas, radio ob-
servations of an increasing number of mas-
sive galaxy clusters unveil the presence of
ultra-relativistic particles and magnetic fields
through the detection of diffuse, giant Mpc-
scale synchrotron radio halos (RH) and ra-
dio relics (e.g., Ferrari et al. 2008; Cassano
2009). RHs are the most spectacular evidence

of non-thermal components in the ICM. They
are giant radio sources located in the cluster
central regions, with spatial extent similar to
that of the hot ICM and steep radio spectra,
α ' 1.2 − 1.5 (e.g., Venturi 2011, this con-
ference).
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There are well known correlations between
the synchrotron monochromatic radio lumi-
nosity of RH (P1.4 GHz) and the host cluster
X-ray luminosity (LX), mass and temperature
(e.g., Liang et al. 2000; Feretti 2003; Cassano
et al. 2006; Brunetti et al 2009). The most
powerful RH are found in the most X-ray lu-
minous, massive and hot clusters. These corre-
lations suggest a close link between the non-
thermal and the thermal/gravitational cluster
physics.

Another important fact is that RHs are
found in clusters that show recent/ongoing
merging activity: significant substructure and
distortion in the X-ray images (e.g., Schuecker
et al. 2001), complex gas temperature distri-
butions (e.g., Govoni et al. 2004; Bourdin
et al. 2011), shocks and cold fronts
(e.g., Markevitch & Vikhlinin 2001;
Markevitch 2010), absence of strong cooling-
flow (e.g., Feretti 2003; Rossetti et al.
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2011, this conference), and optical substruc-
tures (e.g., Boschin et al. 2006).

In a seminal paper Buote (2001) provided
the first quantitative comparison of the dynam-
ical states of clusters with RH and the prop-
erties of RHs and discovered a correlation be-
tween the RH luminosity at 1.4 GHz and the
magnitude of the dipole power ratio P1/P0.
This implies that the more powerful RHs are
hosted in clusters that experience the largest
departures from virialization.

The RH-merger connection and the
thermal–non-thermal correlations suggest that
the gravitational process of cluster forma-
tion may provide the energy to generate the
non-thermal components in clusters through
the acceleration of high-energy particles via
shocks and turbulence (e.g., Sarazin 2004,
Brunetti 2011, this conference). Cluster-cluster
mergers are among the most energetic events
in the present Universe: two clusters with total
masses M1 and M2 dissipate a gravitational
energy (in erg) :

Eg ≈ 1064
(

M1

1015 M�

)(
M2

1015 M�

)(
do

6Mpc

)−1

(1)

do is the turnaround distance. The theoretical
goal is to understand how a fraction of this
large energy budget is channeled into the ac-
celeration of high energy particles and ampli-
fication of cluster magnetic field (e.g., Brunetti
2011, this conference).

The recent discovery of RHs with very
steep spectrum provides additional support
to the scenario where RHs are generated
due to re-acceleration of relativistic particles
by merger-driven turbulence (e.g., Brunetti
et al 2008, Brunetti 2011 this conference).
Future low-frequency radio telescopes (such as
LOFAR and LWA) have the potential to test
this scenario and to further explore the con-
nection between RH and the process of cluster
formation. Here I will discuss the most recent
evidences in favor of the connection between
RHs and clusters mergers and the expectations
of the turbulent re-acceleration scenario to test
trough future low frequency observations.

2. The GMRT RH Survey and the
radio bi-modality of clusters

Recently, deep radio observations of a com-
plete sample of galaxy clusters have been car-
ried out as part of the Giant Metrewave Radio
Telescope (GMRT) RH Survey (Venturi et al.
2007, 2008). These observations confirmed

that diffuse cluster-scale radio emission is not
ubiquitous in clusters: only 30% of the X-ray
luminous (LX(0.1 − 2.4 keV) ≥ 5 × 1044 erg/s)
clusters host a RH. Most importantly, these ob-
servations allow to separate RH clusters from
clusters without RH, showing a bimodal dis-
tribution of clusters in the P1.4 GHz – LX di-
agram (Brunetti et al. 2007): RHs trace the
well known correlation between P1.4 GHz and
LX , while the upper limits to the radio luminos-
ity of clusters with no-RH lie about one order
of magnitude below that correlation (Fig. 1).
Why clusters with the same thermal proper-
ties (and at the same cosmological epoch) have
different non-thermal properties ? One possi-
bility, which was first suggested by Venturi et
al. (2008) based on information from the lit-
erature available for a fraction of the clusters
of the GMRT RH Survey, is that the behavior
of clusters in the P1.4 GHz − LX diagram is con-
nected with their dynamical state; this is sup-
ported also by a simple visual inspection of the
X-ray images of those clusters (Fig. 1).

3. Dynamical state of GMRT clusters

In a more recent work Cassano et al. (2010a)
using Chandra archive X-ray data of a sub-
sample of clusters belonging to the GMRT
RH Survey1 provided a more quantitative
measure of the degree of the cluster distur-
bance using three different methods: power
ratios (e.g., Buote & Tsai 1995; Jeltema
et al. 2005), the emission centroid shift
(e.g., Mohr et al. 1993; Poole et al. 2006), and
the surface brightness concentration parame-
ter (e.g., Santos et al. 2008). The power ra-
tio method is a multipole decomposition of the

1 Those with archival data with at least 2000
ACIS-S or ACIS-I counts in the 0.5-2 keV band
inside an aperture of 500 kpc (see Cassano et al.
2010a).
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Fig. 1. Distribution of clusters in the plane radio (P1.4) – X-ray luminosity (L[0.1−2.4]keV ) for clusters of the
GMRT RH Survey (blue symbols) and for RH from the literature (black dots); adapted from Brunetti et
al.(2009).

gravitational potential of the two-dimensional
projected mass distribution inside a given aper-
ture Rap. Following Buote & Tsai (1995) they
are usually defined as Pm/P0, where Pm rep-
resents the square of the mth multipole of
the two-dimensional potential (see eqs. 1-4 in
Cassano et al. 2010a). Large departures from
a virialized state are then indicated by large
power ratios.

The centroid shift, w, is defined as the stan-
dard deviation of the projected separation be-
tween the peak of the X-ray emission and the
centroid, derived in increasing circular aper-
tures and expressed in units of Rap = 500 kpc.
The centroid shift, w, is a measure of the skew-
ness of the photon distribution of a cluster, thus
larger values of w indicate clusters with a more
asymmetric/irregular distribution of the X-ray
emission.

The concentration parameter, c, defined as
the ratio of the peak over the ambient sur-
face brightness, S , c =

S (r<100 kpc)
S (<500 kpc) , has been

used in literature for identification of cool core
clusters (Santos et al. 2008). We used c to

separate galaxy clusters with a compact core
(higher values of c, core not disrupted from re-
cent merger events) from clusters with a broad
distribution of the gas in the core (lower val-
ues of c, core disturbed from a recent merger
episode).

3.1. Results

In Fig.2 we report the distribution of the 32
clusters in the (c, P3/P0) plane (upper panel)
and in the (w, P3/P0) plane (lower panel). We
found that RH clusters (red filled dots) can be
well separated from clusters without RH (black
open dots) and clusters with mini-halos2 (blue
open dots). Clusters with RHs are found only
in the region of low values of c (c <∼ 0.2), and
high values of P3/P0 (P3/P0 >∼ 1.2× 10−7) and
w (w >∼ 0.012).

2 Radio mini-halos are diffuse synchrotron emis-
sion on smaller scales (e.g., 200-500 kpc) extend-
ing around powerful radio galaxies at the center of
some cool core clusters (e.g., Venturi 2011, this con-
ference).
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Fig. 2. Upper Panel: concentration parameter c vs.
power ratio P3/P0; Lower Panel: centroid shift w
vs. P3/P0. Symbols are: RH (red filled dots), non-
RH (black open dots), mini-halos (blue open dots).
Vertical and horizontal dashed lines mark : c = 0.2,
w = 0.012 and P3/P0 = 1.2 × 10−7.

Both diagrams provide strong evidence that
RHs form in dynamical disturbed clusters,
while clusters with no evidence of Mpc-scale
synchrotron emission are more relaxed sys-
tems. We also tested quantitatively this re-
sult by running Monte Carlo simulations (see
Cassano et al. 2010a for details) and proved
that the observed distribution differs from a
random one (i.e., independent of cluster dy-
namics) at more than 4σ. This proves that our
result is statistically significant and shows, for
the first time, that the separation between RHs
and non-RH clusters (the observed radio bi-

Fig. 3. Schematic representation of the synchrotron
spectra of RHs with different values of νs (see text
for details). Those with higher values of νs are vis-
ible up to GHz frequencies, while those with lower
values would be observable only at lower frequen-
cies.

modality of clusters) has a corresponding sep-
aration in terms of dynamical properties of the
host clusters. We note that there are 4 out-
liers in Fig.2: Abell 781, MACS 2228, Abell
141 and Abell 2631, i.e., clusters that are dy-
namically disturbed but that do not host a RH.
3 These clusters deserve further investigation
(see also next Sect.).

4. Turbulent re-acceleration scenario
and low frequency observations

A promising scenario proposed to explain the
origin of the synchrotron emitting electrons in
RHs assumes that electrons are re-accelerated
due to the interaction with MHD turbulence in-
jected in the ICM during cluster mergers (tur-
bulent re-acceleration model, (e.g., Brunetti et
al. 2001; Petrosian 2001).

3 For one of them, Abell 781, more recently we
verified that its 0.2-2.4 keV luminosity, LX ∼ 4−5×
1044 erg/s, (e.g., Böhringer et al. 2000; Maughan et
al. 2008, S. Ettori, private communication, based
on a shallow ROSAT HRI exposure) is substan-
tially smaller than that used in the GMRT sam-
ple (taken from the Ebeling et al. (1998) catalogue,
LX ' 1.13 × 1045 erg/s) and is smaller than the
threshold value (LX >∼ 5 × 1044 erg/s) used to select
clusters for the GMRT RH Survey.
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This scenario naturally explain the ob-
served bi-modality of clusters (e.g., Brunetti et
al 2009) and the observed connection between
RHs and cluster mergers.

Stochastic particle acceleration by MHD
turbulence is rather inefficient in the ICM, con-
sequently electrons can be accelerated only
up to energies of mec2γmax ≤ several GeV.
This entails a high-frequency cut-off in the
synchrotron spectra of RHs, which marks the
most important expectation of this scenario.
The presence of this cut-off implies that the ob-
served fraction of clusters with RHs depends
on the observing frequency, this can be imme-
diately understood from Fig. 3. The steepen-
ing of the spectrum makes it difficult to detect
RHs at observing frequencies larger than the
frequency, νs, where the steepening becomes
severe. The frequency νs depends on the accel-
eration efficiency in the ICM, which in turns
depends on the flux of MHD turbulence dissi-
pated in relativistic electrons (e.g., Cassano et
al. 2006; Cassano et al. 2010b). Larger val-
ues of νs are expected in more massive clusters
and in connection with major merger events.
As a consequence, according to this model,
present radio surveys at ∼ GHz frequencies
can reveal only those RHs generated during
the most energetic merger events and charac-
terized by relatively flat spectra (α ∼ 1.1− 1.5)
(see Fig.3). These sources should represent the
tip of the iceberg of the whole population of
RHs, since the bulk of cluster formation in the
Universe occurs trough less energetic mergers.
Low frequency observations with next gener-
ation of radio telescopes (LOFAR, LWA) are
thus expected to unveil the bulk of RHs, in-
cluding a population of RH which will be ob-
servable preferentially at low radio frequencies
(ν ≤ 200 − 300 MHz). These RHs, generated
during less energetic but more common merger
events, should have extremely steep radio spec-
tra (α >∼ 1.5−1.9) when observed at higher fre-
quencies; we defined these sources Ultra Steep
Spectrum RH (USSRH). Possible prototypes
of these RHs are those found in Abell 521
(α ∼ 2 Brunetti et al 2008) and in Abell 697
(α ∼ 1.7 Macario et al. 2010).

In the framework of the turbulent re-
acceleration scenario, the existence of merg-

ing clusters with no Mpc-scale radio emis-
sion (e.g., in Fig. 2) is not surprising for two
main reasons. First, the expected lifetime of
RHs (∼ Gyr) can be smaller than the typical
time-scale of a merger, during which the clus-
ter would appear disturbed, readily implying
that not all disturbed systems should host RHs
(e.g., Brunetti et al 2009).

Second, and most important, a fraction of
clusters should host USSRH that are difficult
to detect trough observations at high frequen-
cies. USSRH are mainly expected in disturbed
clusters with masses Mv <∼ 1015 M� (in the lo-
cal Universe), or in merging (massive) clusters
at higher redshift, z >∼ 0.4 − 0.5 (Cassano et al.
2010b). In line with this scenario, 3 out of the

4 outliers have X-ray luminosity close to the
lower boundary used to select the GMRT sam-
ple (LX = 5×1044 erg/sec), and the other is the
cluster with the highest redshift in the GMRT
sample (z ' 0.42). Interestingly, a deep GMRT
follow-up at 325 MHz of one of the outliers in
Fig. 2, Abell 781, has revealed the presence of
a possible USSRH (Giacintucci 2011, this con-
ference; Venturi et al. 2011, submitted), which
need to be confirmed by future deeper low-
frequency observations.

USSRH are expected to be less powerful
than RHs with flatter spectra (see Cassano
2010) and thus very sensitive low-frequency
observations are necessary to catch them. The
ideal instrument to search these RHs is LOFAR
(LOw Frequency ARray) that is already oper-
ating in commissioning phase (e.g., Röttgering
2010). To derive quantitatively the statistical
properties of RHs, we used Monte Carlo pro-
cedures (e.g., Cassano & Brunetti 2005) that
follow the process of cluster formation, the
injection and dissipation of turbulence dur-
ing cluster-cluster mergers and the ensuing ac-
celeration of relativistic particles in the ICM.
The expectations based on these procedures
were found consistent with present observa-
tional constraints (e.g., Cassano et al. 2008).
Thus using the same procedures we derived
expectations for the planned LOFAR surveys.
The Tier 1 “Large Area Survey” at 120 MHz
(see Röttgering 2010) is expected to greatly in-
crease the number of known giant RHs with
the possibility to detect about 350 RHs up
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to redshift z ≈ 0.8 with about half of these
RHs having very steep radio spectra (α >∼ 1.9,
Cassano et al. 2010b). Consequently future
LOFAR surveys will allow a powerful test
of the merger-driven turbulence re-acceleration
scenario for the origin of RHs.

5. Conclusions

We discussed the most recent evidences that
demonstrate a connection between the gener-
ation of Mpc-scale radio emission in clusters,
in the form of giant RHs, and the merging ac-
tivity in clusters.

A step forward in this direction comes from
the discovery that the radio bi-modality of clus-
ters has a correspondence in terms of dynam-
ical state of the clusters : clusters with RHs
are found to be dynamically disturbed, while
clusters without RHs are dynamically relaxed.
This has been proved by applying three differ-
ent methods to characterize cluster substruc-
tures to the X-ray Chandra images of GMRT
clusters (Cassano et al. 2010a).

The correlation between the synchrotron
radio luminosity of RHs and the cluster X-ray
luminosity (mass and temperature) combined
with the connection between RHs and clus-
ter mergers suggest that there are at least two
main ingredients in the generation of RHs :
the cluster dynamical status and cluster mass.
These observational facts are naturally under-
stood in the framework of one of the proposed
pictures put forward to explain the origin of
giant RHs, the merger-induced turbulence re-
acceleration scenario (Brunetti et al. 2001;
Petrosian 2001). This scenario has unique ex-
pectations for the statistical properties of RHs
that could be tested by future radio surveys at
low frequencies.

In particular, the shape of the spectrum of
RHs is connected with the energy dissipated
during cluster mergers and thus ultimately with
the mass of the hosting clusters and with the
mass ratio (impact parameter etc) of merger
events. A large fraction of RHs, those associ-
ated with less massive merging systems and
those at higher redshift, should have ultra-steep
spectra and glow up preferentially in deep sur-
veys at low radio frequencies (Cassano et al.

2010b). LOFAR is thus expected to perform a
powerful test of this scenario.
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